Warning: This document is for an old version of rasa NLU. The latest version is 0.15.1.

Migration Guide

This page contains information about changes between major versions and how you can migrate from one version to another.

0.8.x to master

0.7.x to 0.8.x

  • The training and loading capability for the spacy entity extraction was dropped in favor of the new CRF extractor. That means models need to be retrained using the crf extractor.

  • The parameter and configuration value name of backend changed to pipeline.

  • There have been changes to the model metadata format. You can either retrain your models or change the stored metadata.json:

    • rename language_name to language
    • rename backend to pipeline
    • for mitie models you need to replace feature_extractor with mitie_feature_extractor_fingerprint. That fingerprint depends on the language you are using, for en it is "mitie_feature_extractor_fingerprint": 10023965992282753551.

0.6.x to 0.7.x

  • The parameter and configuration value name of server_model_dir changed to server_model_dirs.

  • The parameter and configuration value name of write changed to response_log. It now configures the directory where the logs should be written to (not a file!)

  • The model metadata format has changed. All paths are now relative with respect to the path specified in the configuration during training and loading. If you want to run models that are trained with a version prev to 0.7 you need to adapt the paths manually in metadata.json from

    {
        "trained_at": "20170304-191111",
        "intent_classifier": "model_XXXX_YYYY_ZZZZ/intent_classifier.pkl",
        "training_data": "model_XXXX_YYYY_ZZZZ/training_data.json",
        "language_name": "en",
        "entity_extractor": "model_XXXX_YYYY_ZZZZ/ner",
        "feature_extractor": null,
        "backend": "spacy_sklearn"
    }
    

    to something along the lines of this (making all paths relative to the models base dir, which is model_XXXX_YYYY_ZZZZ/):

    {
        "trained_at": "20170304-191111",
        "intent_classifier": "intent_classifier.pkl",
        "training_data": "training_data.json",
        "language_name": "en",
        "entity_synonyms": null,
        "entity_extractor": "ner",
        "feature_extractor": null,
        "backend": "spacy_sklearn"
    }